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Introduction
• Higgs, Higgs via vector boson fusion (VBF)
• ATLAS at LHC

Focus on similar final states
• VBF H →WW*!→  e µ      νe νµ 
• VBF H →  ττ! →  ℓ h    νℓ ντ ντ

Putting it together

References ![a] HWW,! ATLAS-CONF-2013-030 ! - Mar.! 2013 
! [b] Combo,!Phys. Lett. B726 (2013) 88!- Oct.! 2013 !
! [c] Hττ,! ATLAS-CONF-2013-108 ! - Dec.!2013 
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2 lepton-like objects

Missing ET (MET)

https://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-030/
https://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-030/
https://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-030/
http://www.sciencedirect.com/science/article/pii/S0370269313006369
http://www.sciencedirect.com/science/article/pii/S0370269313006369
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HongHiggs found at 125 GeV
Allows fermion mass terms, restores electroweak symmetry
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Tree relation for massive “X”

Y
Y

H

Loop relation for massless “Y”

Divide into two groups

gX

gY - effective

H
X
X

Higgs boson theory - all true?

spin-½ spin-0 spin-1

Credit: Fermilab



HongHiggs boson theory
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Lots to probe experimentally at the LHC.

Massive M

Vector bosons V ≡ W, Z

H
V 
V

gV ∝ +2 (MV)2

vev

Fermions F ≡ q, ℓ

H
F
F

gF ∝ – MF
vev

Photon γ
γ
γtH

W
γ
γH

γ
γH W

Massless

Gluon g
g
gtH H ? H

Higgs mass stabilization

Beyond scope of talk

Higgs self-interaction

H
H
H

(MH)2

vevg2H ∝ –3

(MH)2

vev 2g3H ∝ –3
H
H
H

H



Whatʼs measured
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Gluon-Gluon 
Fusion (ggF), 
dominant at LHC

Higgs productions

g
g t H

Vector Boson 
Fusion (VBF), 
sub-dominant

H
V 
V

H
Z
Z

Higgs decays

γ
γtH

W
γ
γH

γ
γH W

H
W 
W

H
F
F

Discovered Higgs with ggF 
production with
! ggF → H → bosons

Now have evidence of VBF 
production with
! VBF → H → bosons

Only depends on gV

Best direct constraint on gF



ATLAS Higgs summary Hong
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I describe two analyses

Why VBF HWW

• I worked on it
• Best gV, VBF HWW 2.5σ

Why VBF Hττ
• Penn student work 
• Direct gF, Hττ 4.1σ (Dec.)

Important now, also Run-2
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HongAnalysis similarities
VBF H→WW*→eµ, VBF H→ττ→ℓh
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Two jets, two “leptons,” MET

V

V

H
 

W, τ

W*, τ

ℓ 

ℓ, h 

ν

ν, νν

Tag decay Tag production 



Similarities
• Trigger on e, µ
• 2 “leptons,” 2 neutrinos 
• MET, no sharp mass peak

Differences
• Decay kinematics physics
• One τ→hadronic

Same
• Vector boson fusion

HongAnalysis similarities
VBF H→WW*→eµ, VBF H→ττ→ℓh

7

Two jets, two “leptons,” MET

V

V

H
 

W, τ

W*, τ

ℓ 

ℓ, h 

ν

ν, νν

Tag decay Tag production 
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R.N. CAHN and Sally DAWSON 
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We compare Higgs boson production mechanisms at multi-TeV hadronic colliders. In addition to the previously inves- 
tigated processes gluon + gluon ~ H and q?l ~ V* ~ VH (V = W, Z), we consider Higgs boson formation by pairs of virtual 
W's or Z's, a process analogous to two-photon collisions in e+e - scattering. The Higgs production process W'W* ~ H' is 
dominated by longitudinal W's and is the most important mechanism for M H > 6 M W, if the top quark mass is about 30 
GeV. 

1. Introduction. The standard Glashow-Weinberg-  
Salam [1 ] model of electroweak interactions has 
been extremely successful at predicting low energy 
phenomena. With the recent discovery [2] of the 
W and Z gauge bosons, the only particle of the theo- 
ry remaining to be discovered is the I-Iiggs boson, a 
neutral spin-zero particle. The Higgs is required for 
the spontaneous symmetry breaking which give rise 
to masses in the theory. Unfortunately, although the 
couplings of the Higgs boson to quarks and leptons 
are predicted, its mass is not.  

We shall consider here the possibility that the I-Iiggs 
boson is very massive, in fact with a mass several times 
that of the W. The dominant decay of such a Higgs 
boson is into W or Z pairs. The partial widths are pre- 
dicted to be 

r ( H  ~ W+W - )  "" GFM3H]87rx/~ 

"~ 40 GeV(MH/500 GeV) 3 , ( la )  

F(H -~ ZZ)-~ 21- F(H-~ W+W-). (lb) 
Clearly, for M n > 10Mw, the width of the Higgs 
boson is so great that its detection becomes quite 
improbable. For Higgs boson masses above threshold 

This work supported in part by the Director, Office of 
Energy Research, Office of High Energy Physics and 
Nuclear Physics, Division of High Energy Physics of the 
U.S. Department of Energy under Contract DE-AC03- 
76SF00098. 
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for the WW decay but not in excess of 7 - 8  M w there 
is a chance that the Higgs boson could be found in ex- 
periments at a multi-TeV hadronic collider. The best 
signature may be furnished by the leptonic decay of 
one of the W's or Z's [3]. 

2. Bas& production cross sections. In the standard 
electroweak model, the Higgs boson can be produced 
from quark-ant i-quark interactions, figs. 1 and 2, or 
from gluon-gluon interactions, fig. 3. Previously, it 
has been assumed that the dominant mechanism is 
gluon fusion. However, for a heavy Higgs boson, this 

Pt 

PI I 

; / 

Fig. 1. Higgs boson production from virtual vector boson 
pairs (V = W or Z). The initial state quark (or anti-quark) 
momenta are Pl and P2 and the corresponding final state 
momenta are P'I and p~. The momenta of the virtual vector 
bosons are q 1 and q2. 

0.370-2693/84/$ 03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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ector boson

iggs

HongLHC as a vector boson collider

8

Vector-boson fusion
Cahn, Dawson, PLB 136 (1984) 196 

VBF jet: high-PT, high-η

How rates relate to gV

• WW*!rate ∝ | gV 2 |2

•    ττ  !rate ∝ | gV ⋅ gF |2

All VBF Higgs inputs to gV

←



HongMajor backgrounds
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Z jets,
bkg. to ττ

ttbar,
bkg. to WW*

VBF Higgs

τ

τ

g

g

Z

g

g

t

t

W

W

b

b
g

q

q

H

g

Jets

Jets widely 
separated

Jets not as 
separated

Jets not as 
separated

Energy deposits

No color near H
No extra jets inside

Hadronic activity

Hadronic activity

W, τ
W*, τ



Hong
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General feature of VBF production

VBF “central region”
Zeppenfeld, Rainwater, PRD 60 (1999) 113004 
Barger, Cheung, Han, PRD 42 (1990) 3052 

Why
• Vector bosons are colorless
• No color between jets

Consequence 1
• Less hadronic activity 

between jets in VBF

Consequence 2
• Higgs decay daughters 

between jets in VBF

Effective in rejecting non-VBF

Central 
region

V

V

H

Z
τ

τ

g

g

W

W
b

b
t

t



Hong
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VBF jets
Two highest-PT jets separated by Δη
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H →WW*→eµ, ≥2j
ATLAS,!8 TeV [a]Events in 

12 bins

ttbar
Higgs x50

Physics of jj invariant mass
• More powerful than Δη alone
• M(jj)"≈ √ PT1 ⋅PT2 ⋅eΔη 

 ~〈PT, jet〉eΔη / 2

• Example: 40 • e3 / 2 = 180 GeV

VBF has high value, non-VBF low

M(jj) great v. all backgrounds



C(ℓ) ≡ e
−

����
η� − ηavg

∆η/2

����
2

HongVBF central region in η 
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ℓ in between 
jets or not?

VBFNon-VBF
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Quantify if object is in the central region 
• Consider “centrality” of object w.r.t. VBF jets
• Example here takes lepton, but same for all
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Introduction
• Higgs via VBF
→ATLAS at LHC

Focus on similar final states
• VBF H →WW*!→  e µ      νe νµ 
• VBF H →  ττ! →  ℓ h    νℓ ντ ντ

Putting it together

HongOutline
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2 lepton-like objects

Missing ET (MET)



muon

neutrino

proton
neutron

electron
photon

photon
electron

Muons
spark
drift

Tracker  
transition radiation 
silicon strip & pixel

Solenoid

Beam pipe

Toroid

Calo  
hadronic 
electromag.

HongATLAS detector
2 magnets, 3 sub-detector groups

14



Coverage important for analyses
• Lepton! up to ~2.6
• Jet! up to 4.5 → crucial to tag forward VBF jets
• Tracking! up to 2.5 → limitation for ttbar rejection

HongATLAS η coverage
Shows tracker “inner detector”

15

η=2.5 η=2.7

η=4.9

η=3.2

Solenoid coil
TRT-endcapTRT-barrel

SCT-endcapSCT-barrel
P-ec

Pixel support tube
Beam pipe (d=7.2cm)Pixel-b

beam

η=0
EM calo, 
Had. calo

Electron, 
Tracking (b, τ) Muon Fwd. 

calo



Why b important
• Reject ttbar for H→WW*

Multivariate b identification
• 85% signal efficiency
• 10x rejection of light jets, 2.5x c jets

b quark jets
Long lifetime of 0.5mm, displaced vertices

Hong

16

3mm

2.5mm

Data ttbar with two tagged b

Inside 
beam 

pipe

x

y



HongHadronic τ “jets”
“Long” lifetime of 0.1mm, unique shower pattern
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Why hadronic τ important
• B(τ→hντ) = 0.6 for H→ττ→ℓh 

Multivariate τ identification
• 60% signal efficiency
• 20x rejection of light jets

HAD
γγ

EM energy

EM calo

Had. calo

π+ π0

Data τ+ → π+ π0 ντ
→ γγ

η

r
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Production rates for Lpeak = 8 nb–1 /sec
• σinelastic!= 60 mb!→ 5⋅108 /sec 
• σZ→µµ! = 08 nb!→ 5⋅167  /sec 
• σgg→H! = 20 pb!→ 5⋅10.2  /sec
• σVV→H!= 02 pb!→ 5⋅10.02!/sec

Need large reduction of background 
while saving Higgs events 

Analysis triggers
• VBF H →WW*!→ e µ  νe νµ 
• VBF H →  ττ ! → ℓ  h νℓ ντ ντ 
• Both trigger on ℓ = e, µ > 24 GeV
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Formula
• Npp→H→xyz = L ⋅ σpp→H ⋅ BH→xyz

Production σpp→H
Heinmeyer et al., CERN-2013-004

• ggF  theory uncertainty ~10%
• VBF theory uncertainty ~03%
• VH, ttH smaller cross-section

90k
25k

07k
02k

02k
10k

200
800

NH→WW*
NH→ττ

NWW*→eµ
Nττ→ℓh

ggF VBF

21 fb–121 fb–1

19,270 fb 01,580 fb

400k 33k

Diagram

L (8 TeV)

σpp→H

Npp→H

q

q V
V H

g
g t H

O(1000) VBF Higgs in this talk

How many Higgs did LHC make? Hong
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Decay BH→xyz

ττ   6%
cc  ZZ*

1% rest 
(0.2% γγ)

57%
via loop

21%
gg  9%

3%
3%

H
W

W

H
b

b

https://cds.cern.ch/record/1559921
https://cds.cern.ch/record/1559921


Introduction
• Higgs via VBF
• ATLAS at LHC

Focus on similar final states
→VBF H →WW*!→  e µ      νe νµ 
• VBF H →  ττ! →  ℓ h    νℓ ντ ντ

Putting it together

HongOutline
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2 lepton-like objects

Missing ET (MET)



HongVBF WW* → eµ
Analysis flowchart 
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• Require non-b jets with Δηjj ≳ 3
• Require e, µ, MET

• Fit MT, Higgs to get µHiggs, VBF 

• Select on VBF production properties
• Select on H→ WW* decay properties
• Background model validation

• Trigger on ℓ mostly

This 
section

Already 
discussed

Results

Analysis

Pre-sel.



WW* physics with NJet Hong
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5.1 events12.3 background evts

20 data events
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Data

Pre-sel.

Results

Analysis

• Benefit by VBF rate ∝ | gV  |4

• Measuring ±50% rate 
translates to ±11% gV

• Separate ggF v. VBF by NJet



Physics with ℓℓ Hong
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• Higgs (J=0)
• W decay violates parity
• Spin conservation

→ Collinear ℓℓ → Low Mℓℓ

νe

e 
W

WH
νµ

µ

Excess as expected

Pre-sel.

Results

Analysis
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• Considered ℓℓ, now add MET

• Approximate mass with MT, H

• Broad at ~ 30 GeV

Pre-sel.

Results

Analysis

MT, H = !√ (ET, H)2 – (PT, H)2

PT, H = !PT, ℓℓ + MET

ET, H = !ET, ℓℓ + MET

      √ (PT, ℓℓ)2 + (Mℓℓ)2

Shape, normalization 
consistent with Higgs at 125



MET

MuonElectron

Jet

Jet

PT = 42 GeV

PT = 68 GeV

PT = 15 GeVPT = 51 GeV

30 GeV

VBF-like in jj & Higgs-like in decay

HongVBF H →WW* → eµ MET

26

Nov. 17, 2012
07:42:05 CET
run 214680
evt 271333760

Electron

Muon

Jet

Jet
MET

VBF

HWW

Δηjj = 6.6
Mjj = 1.5 TeV
Meµ = 21 GeV

MT, H = 95 GeV
Jets not b-taggedJets not b-taggedJets not b-tagged

(

(

ttbar



Hongttbar→WbWb background
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• In ttbar events, high Mjj 
selects one b, one non-b

lead jet
y
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phase space
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b jet
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b jet 
outside 
tracker
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cuts

Pre-sel.

Results

Analysis
• VBF jets have large η, 

where no tracking
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ttbar modeling difficulty
• Slide for experts

Hong
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Pre-sel.

Results

Analysis

ttbar good ℓℓ & MET modeling, but

VBF jet modeling is difficult in tiny 
corner of phase space

• Estimate Nttbar = NMC ⋅ fcontrol 

where! ! NData

! NMC    control

• Repeat with other MCs, find 
estimates consistent to 15%

ttbar estimate is stable

ttbar

(     )fcontrol = !  = 0.6 ± 0.15
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• VBF WW* significance is 2.5σ, 1.6σ

HongVBF v. ggF with bosons
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Pre-sel.

Results

Analysis
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Rescale the axes
so same metric in x, y

VBF WW* measurements
• µVBF

µggF

• µVBF = 1.6 ± 0.8

For all modes, ggF rates 
better than VBF by ~2x

2.2
1.0= 2.0 ±

40% stat.
25% syst. 

individual

Pre-sel.

Results

Analysis



Evidence of VBF
in boson final states

Hong
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Combine WW*, ΖΖ*, γγ

• VBF evidence at 3.3σ

•                  =1.4 ±     ±

! =1.4 ± 

Measured ggF, VBF with 
bosons

What about fermions?
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Introduction
• Higgs via VBF
• ATLAS at LHC

Focus on similar final states
• VBF H →WW*!→  e µ      νe νµ 
→VBF H →  ττ! →  ℓ h    νℓ ντ ντ

Putting it together

HongOutline
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h = hadron
 τ → π ντ (+π0) 

45%
3π

14%
  light lep.

ℓ = e, µ
35%

rest  

5%

Missing ET (MET)



HongVBF ττ → ℓh
Analysis flowchart 
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Results

Analysis

Pre-sel. • Require non-b jets with Δηjj > 3
• Require ℓ, τ→h, MET

• Fit BDT score to get µHiggs 

• Define variables for VBF production
• Define variables for H→ ττ decay
• Train BDT to select H using all vars
• Background model validation

• Trigger on ℓ

Already 
discussed

This 
section



Pre-sel.

Results

Analysis

ττ physics with NJet

g
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+VHggFFake τ Others

8.0 sig. evts32 background evts

34 data events

• 

←!I will describe
! VBF ℓh

Zττ VBFggFFake • 

8.7 signal8.7 bkg.

18 data events

Oth.

Hong
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Rate ∝ | gF |2 Highest BDT bin for ℓh

ggF, VBF

yes better 
S/B WW*

good best ττ

“boosted” (PT, H>100)

• Like WW*: have

Data

Data



Suppress fake ττ with φMET Hong
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• Neutrinos from τ decays are mostly collinear
• Define “centrality” of φMET w.r.t. charged daughters
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Pre-sel.

Results

Analysis

Good separation from fake ττ



Z → ττ
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Suppress Z→ττ with M(ττ)
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• M(ττ) = M(ℓhνeντντ), so need Pν1, Pν2, Pν3
• METx, y = (Σi Pν, i)x, y resolution smears constraint
• Parametrize unknowns by opening angles Δρ

Pre-sel.

Results

Analysis

opening 
angle Δρ

)

τ τ

h

ν2

h

ν1

MET

A. Elagin et al., NIM A654 (2011) 481

1. Generate Δρ distributions with MC
2. Scan allowed configurations, pick 

most likely M(ττ) for each event

Good separation from Z → ττ H → ττ

http://www.sciencedirect.com/science/article/pii/S0168900211014112
http://www.sciencedirect.com/science/article/pii/S0168900211014112


Run: 214021
Event: 269834309

2012-11-05 09:48:46 UTC

Jet

Electron Tau
PT = 27 GeVPT = 56 GeV

Jet
Nov. 5, 2012
09:48:46 UTC
run 214021
evt 269834309

VBF-like in jj & Higgs-like in decay

Run: 214021
Event: 269834309

2012-11-05 09:48:46 UTC Electron

Tau

Jet

Jet

MET

HongVBF"H"→ ττ → eh MET
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113

VBF !-
Hττ   -

Mjj = 1.5 TeV
Mττ = 129 GeV

BDT score = 0.99, S/B here is 1.0= 0.99, S/B here is 1.0



Train BDT to select Higgs
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100
M(ττ) (GeV)
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• Feed BDT the variables for VBF production, H decay
• I described the key ones already
• Letʼs look at M(ττ) before applying BDT

These are estimated using data

H→ττ is visible (note y-axis)

Z→ττ is falling - use µµ sample

Fake τ is flatter - “fail” sample
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Method, validation of Z → ττ Hong
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Control region definition
MT, W < 40 to veto W→ℓν
M(ττ) < 110 to veto H→ττ

• Fact: pp→Z same for Z→ττ, Z→µµ

• Select Z→µµ with Mµµ > 40, loosely isolated µ
• Use MC to decay τ in µʼs place
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Method, validation of jet faking τ
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• W jet → ℓhfake fakes H → ττ → ℓh
• Nfail are signal-like events with h failing strict id.
• Get fail-to-pass ratio using a pure jet sample

Good modeling in BDT

Pre-sel.

Results

Analysis
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Fake τ



BDT applied to data Hong
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• Look at classification for ℓh in for 1j, ≥2j

S≃10, B≃10
µHiggs = 1.4 best

Excess in expected area
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~ BDT score



Combined result v. 125
• S/B weighted M(ττ) for 1j, ≥2j
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(µ=1.4)

• Significance (with ℓℓ, hh) 
is 4.1σ,  3.2σ

observed expected

• Excess at expected 
for Higgs at 125 µH125 = 1.4
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H→ττ
(µ=1.4)

• Significance (with ℓℓ, hh) 
is 4.1σ,  3.2σ

observed expected

• Excess at expected 
for Higgs at 125 µH125 = 1.4

µH110 = 1.8

µH150 = 5.9
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VBF v. ggF with H → ττ Hong
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Rescale the axes
so same metric in x, y

(ττ traced by hand)Observations

• ττ different shape 
because VBF-driven

• ττ ~ WW* ~ γγ in VBF

• All consistent  with SM 
within errors

Axes rescaled 
from the original

SM B/B! 
ggF+ttH
"

0 0.5 1 1.5 2 2.5 3 3.5 4

SM
 B

/B
! 

VB
F+

VH
"

-2

0

2

4

6

8

10

Standard Model
Best fit
68% CL
95% CL

 H 
 4l ZZ* H 

l l WW* H 

ATLAS 
-1Ldt = 4.6-4.8 fb = 7 TeV  s

-1Ldt = 20.7 fb = 8 TeV  s

 = 125.5 GeVHm

ATLAS [b]
7, 8 TeV data 
ATLAS Prelim. [c]
8 TeV data
For 125.5 GeV

individual

Pre-sel.

Results

Analysis



Introduction
• Higgs via VBF
• ATLAS at LHC

Focus on similar final states
• VBF H →WW*!→  e µ      νe νµ 
• VBF H →  ττ! →  ℓ h    νℓ ντ ντ

→ Putting it together

HongOutline

45

2 lepton-like objects

Missing ET (MET)



κF ≡ κt = κb = ..

t, c, ..

t, c, ..
H

Fermions
κV ≡ κW = κZ

H
W, Z

W, Z

Vector bosons

Are Higgs couplings modified?
• Consider ratio w.r.t. SM

! gX, Data

!  gX, SM

for any particle “X”

If we had large statistics, 
determine κ for each vertex

• But we donʼt (yet)
• Usually “lump” some together 

to taste, e.g., κV ≡ κW = κZ

HongPutting it together into g
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H
q’

q’q

q
V
V

W

W
∝ (κV) 4

2

Example

κX ≡             = 1 for SM value



Results

• Consistent with 
SM, but large 
errors

Features
• All rates ∝ κ2, 

except for γγ

Benchmark scenario: 
• Vector boson couplings deviate from SM by common factor κVector

• Fermions deviate from SM by common factor κFermion

γ
γH W

γ
γtH

–

+

HongHiggs in EW same as in fermion?
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0.4 gV, Data
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=

κVector boson

Rescale the axes
and omit negative solution

Hong
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Observations
• All far from (0, 0)

• See κV  2x better than κF, 
ggF rate!2x better than VBF

VBF is statistics limited, so both 
axes will get better with Run-2

SM

Best fit

WW*

γγ
ZZ*

=

κFermion

gF, Data

gF, SM

ATLAS [a]
For 125.5 GeV
7, 8 TeV data



Higgs width or something else?  Take WW* as example.

HongWhat if rates remain high?

49

Rate depends on width: WW* rate = (σ⋅B)WW  ≡ σ ⋅ ΓWW

 Γtotal width



Higgs width or something else?  Take WW* as example.

HongWhat if rates remain high?

49

Rate depends on width: WW* rate = (σ⋅B)WW  ≡ σ ⋅ ΓWW

 Γtotal width

Measure VBF rate:

Measure ggF rate:

µW,VBF  ≡ (σ⋅B)WW,VBF,Data!=!(κV)2 (κW)2

! ! (σ⋅B)WW,VBF,SM! (κtotal)2

µW,ggF  ≡ (σ⋅B)WW, ggF, Data =!(κg)2 (κW)2

! ! (σ⋅B)WW, ggF, SM! (κtotal)2



Higgs width or something else?  Take WW* as example.

HongWhat if rates remain high?

49

Rate depends on width: WW* rate = (σ⋅B)WW  ≡ σ ⋅ ΓWW

 Γtotal width

Measure VBF rate:

Measure ggF rate:

µW,VBF  ≡ (σ⋅B)WW,VBF,Data!=!(κV)2 (κW)2

! ! (σ⋅B)WW,VBF,SM! (κtotal)2

µW,ggF  ≡ (σ⋅B)WW, ggF, Data =!(κg)2 (κW)2

! ! (σ⋅B)WW, ggF, SM! (κtotal)2

Take ratio of rates: g
g t H

H
V 
VµW,VBF (κV)2

µW, ggF (κg)2=RW = ~ • No κtotal 
• No WW*



Higgs width or something else?  Take WW* as example.

HongWhat if rates remain high?

49

Rate depends on width: WW* rate = (σ⋅B)WW  ≡ σ ⋅ ΓWW

 Γtotal width

Measure VBF rate:

Measure ggF rate:

µW,VBF  ≡ (σ⋅B)WW,VBF,Data!=!(κV)2 (κW)2

! ! (σ⋅B)WW,VBF,SM! (κtotal)2

µW,ggF  ≡ (σ⋅B)WW, ggF, Data =!(κg)2 (κW)2

! ! (σ⋅B)WW, ggF, SM! (κtotal)2

Take ratio of rates: g
g t H

H
V 
VµW,VBF (κV)2

µW, ggF (κg)2=RW = ~ • No κtotal 
• No WW*

R ≠ 1 means κV or κg not SM.



Gave details on VBF H→WW*, VBF H→ττ
• Evidence of VBF Higgs
• Evidence of Higgs-lepton coupling

LHC as a vector boson collider

• VBF is statistically limited, so Run-2 data crucial

• VBF is important tool to study Higgs sector

Great potential for sensitivity to new physics!

HongConclusions
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HongThanks
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This talk has been heavily influenced from inputs from many.
In particular, Iʼd like to acknowledge

• J. Alison ! Chicago
• K. Black! Boston
• B. Cerio ! Duke
• M. Morii! Harvard
• P. Chang ! Illinois
• I. J. Kroll ! Penn
• E. Lipeles! Penn
• R. Ospanov ! Penn
• A. Pranko ! LBL
• D. Schaefer ! Penn
• S. Sekula ! Southern Methodist
• A. Tuna ! Penn
• R. Vanguri ! Penn

and many of my Penn & ATLAS co-workers who are not listed above.
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Institute of Technology in Atlanta who studied  
the collaboration structure at CERN before 
the formation of ATLAS, agrees that there is 
no simple top-down decision-making at the 
laboratory. However, he notes that the word 
“commune” implies that there is little rivalry 
between the members of the collaboration. By 
contrast, he says, the collaboration thrives on 
healthy “organized competition” between sub-
groups working to build different components 
for the detector quickly and effectively. 

Now that the collider is running, there are 
other policies within the collaborations that 
reinforce the communal over the individual, 
essentially divorcing physicists from ownership 
of their research, says Knorr Cetina. All papers 
containing experimental results must list the 
name of every member of the thousands-strong 
collaborations alphabetically by country, giving 
little hint of the real originators of the work. 

“This could never happen in biology, where 
the most intense disputes are about publish-
ing, and reputations are established by your 
publications,” says Knorr Cetina, who has also 
studied the lab life of molecular biologists. 

“So much of the narrative of science is 
about the genius of the individual — even the 
Nobel can only be shared by three people,” says 
Maria Ong, a sociologist at TERC, an educa-
tion research collaborative in Cambridge, 
Massachusetts. “The LHC is an amazing  
anti-example of that.”

Who can review?
Collective authorship opens up questions 
about the construction of knowledge in par-
ticle physics, says Peter Galison, a historian 
at Harvard University in Cambridge, Massa-
chusetts. In February, the CMS collaboration 
published its first paper based on an analysis 
of LHC data that showed that a larger than 
expected number of exotic particles, known 
as mesons, were produced during the first 
collisions (CMS Collaboration J. High Energy 
Phys. doi:10.1007/JHEP02(2010)041; 2010). 
The paper includes 15 pages of author names, 
totalling between 2,200 and 2,300 people (the 

collaboration leaders are unsure of the exact 
number). “Can it be said that any one person 
truly understands all the knowledge that it 
contains?” says Galison. And who, he asks, 
can externally review the papers produced? 
“You reach a stage where the only people quali-
fied to truly review the work are within the  
collaboration,” Galison says. 

De Roeck says that the size of particle-physics  
collaborations does inevitably affect peer review. 
The CMS paper went through months of rig-
orous checks and revisions during its internal 
review process; by contrast, it passed through 
external peer review by the Journal of High 
Energy Physics in just four 
days. “External peer review 
for publication in journals 
is becoming less important 
because it is far less stringent 
than our internal peer-review 
process,” he says. 

Although the collaboration’s strength comes 
from stressing the communal good, recent 
developments may strain the system. A rising 
number of particle physicists are turning to the 
individualistic pursuit of blogging. Although 
most posts are not controversial,  the Fermi 
National Accelerator Laboratory (Fermilab) in 
Batavia, Illinois, has had to deal with cases in 
which physicists broke ranks and leaked infor-
mation before their collaborations were ready to 
release it. James Gillies, CERN spokesman, says 
that the European laboratory has no desire to 
censor blogs, but it does provide strict guidelines 
about when it is appropriate to discuss results. 

Even with these guidelines in place, the blog-
ging phenomenon at CERN — and its possible 
tension with official lines of communication 
— is something that will be closely followed 
by Borrelli as part of a team of more than 20 
historians, philosophers and sociologists — “a 
huge collaboration in the humanities,” Bor-
relli jokes — that will begin investigating the 
LHC this year, with funding by the German 
Research Foundation (DFG). 

“This will be a real-time study of how knowl-
edge circulates in such a big project,” says 

Borrelli. She is particularly interested in the 
immediacy of publication in the physics com-
munity via the online repository www.arXiv.org, 
where a hundred or so non-peer-reviewed high-
energy physics preprints are deposited every day 
and are openly accessible. “How do physicists 
select papers and orient themselves given this 
onslaught of information?” she asks.

Social scientists are looking beyond the  
professional lives of the scientists to assess how 
the collective collaborations affect the physi-
cists on a personal level. Knorr Cetina says that 
many particle physicists are plagued by night-
mares in which their actions cause the project 
to fail. “These are the nightmares of those who 
perceive themselves as a link in a chain, not as 
an individual,” she says.

Abnormal stress
Knorr Cetina argues that the anxiety displayed 
by particle physicists is heightened beyond 
the usual career stress because they strongly 
identify with the detector (K. Knorr Cetina  
Interdiscipl. Sci. Rev. 32, 361–375; 2007). “This 
is an object that they built with their hands, but 
they describe it as a friend,” says Knorr Cetina. 
When reporting their nightmares, physicists 
described being shaken by the imagined loss 

of the detector as though it 
was the death of a beloved 
family member — something 
not routinely seen in other 
experimental scientists. 

De Roeck agrees that physi-
cists at the LHC are under 

extreme pressure. Each experiment is made 
up of subgroups who oversee different com-
ponents of the experiment and no subgroup 
wants to be the weakest link that lets thousands 
of other people down. But he cautions against 
making too much of the relationship between 
experimenter and detector. “I wouldn’t go so 
far as to say that physicists have some psycho-
logical problem where they start mistaking the 
detector for a friend and talking to it,” he says 
with a laugh. 

Ultimately, it is the ever-growing detectors 
that are to blame for the increasing size of col-
laborations in particle physics. The invention 
of the bubble chamber for tracking the path 
of particles in the 1950s required groups of 10 
physicists — at the time thought to be a large 
collaboration. 

Physicists are already making plans for the 
next generation of particle accelerators. But 
these may provide little new territory for social 
scientists to explore. “There won’t be another 
step up in collaboration size to 25,000 physi-
cists,” says Galison. “We’re hitting the limits of 
people in high-energy physics.”  
Zeeya Merali is a freelance writer in London. 

“The only people 
qualified to truly review 
the work are within the 
collaboration.”
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Like a giant commune, members of the ATLAS collaboration work, eat and party together.
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Institute of Technology in Atlanta who studied  
the collaboration structure at CERN before 
the formation of ATLAS, agrees that there is 
no simple top-down decision-making at the 
laboratory. However, he notes that the word 
“commune” implies that there is little rivalry 
between the members of the collaboration. By 
contrast, he says, the collaboration thrives on 
healthy “organized competition” between sub-
groups working to build different components 
for the detector quickly and effectively. 

Now that the collider is running, there are 
other policies within the collaborations that 
reinforce the communal over the individual, 
essentially divorcing physicists from ownership 
of their research, says Knorr Cetina. All papers 
containing experimental results must list the 
name of every member of the thousands-strong 
collaborations alphabetically by country, giving 
little hint of the real originators of the work. 

“This could never happen in biology, where 
the most intense disputes are about publish-
ing, and reputations are established by your 
publications,” says Knorr Cetina, who has also 
studied the lab life of molecular biologists. 

“So much of the narrative of science is 
about the genius of the individual — even the 
Nobel can only be shared by three people,” says 
Maria Ong, a sociologist at TERC, an educa-
tion research collaborative in Cambridge, 
Massachusetts. “The LHC is an amazing  
anti-example of that.”

Who can review?
Collective authorship opens up questions 
about the construction of knowledge in par-
ticle physics, says Peter Galison, a historian 
at Harvard University in Cambridge, Massa-
chusetts. In February, the CMS collaboration 
published its first paper based on an analysis 
of LHC data that showed that a larger than 
expected number of exotic particles, known 
as mesons, were produced during the first 
collisions (CMS Collaboration J. High Energy 
Phys. doi:10.1007/JHEP02(2010)041; 2010). 
The paper includes 15 pages of author names, 
totalling between 2,200 and 2,300 people (the 

collaboration leaders are unsure of the exact 
number). “Can it be said that any one person 
truly understands all the knowledge that it 
contains?” says Galison. And who, he asks, 
can externally review the papers produced? 
“You reach a stage where the only people quali-
fied to truly review the work are within the  
collaboration,” Galison says. 

De Roeck says that the size of particle-physics  
collaborations does inevitably affect peer review. 
The CMS paper went through months of rig-
orous checks and revisions during its internal 
review process; by contrast, it passed through 
external peer review by the Journal of High 
Energy Physics in just four 
days. “External peer review 
for publication in journals 
is becoming less important 
because it is far less stringent 
than our internal peer-review 
process,” he says. 

Although the collaboration’s strength comes 
from stressing the communal good, recent 
developments may strain the system. A rising 
number of particle physicists are turning to the 
individualistic pursuit of blogging. Although 
most posts are not controversial,  the Fermi 
National Accelerator Laboratory (Fermilab) in 
Batavia, Illinois, has had to deal with cases in 
which physicists broke ranks and leaked infor-
mation before their collaborations were ready to 
release it. James Gillies, CERN spokesman, says 
that the European laboratory has no desire to 
censor blogs, but it does provide strict guidelines 
about when it is appropriate to discuss results. 

Even with these guidelines in place, the blog-
ging phenomenon at CERN — and its possible 
tension with official lines of communication 
— is something that will be closely followed 
by Borrelli as part of a team of more than 20 
historians, philosophers and sociologists — “a 
huge collaboration in the humanities,” Bor-
relli jokes — that will begin investigating the 
LHC this year, with funding by the German 
Research Foundation (DFG). 

“This will be a real-time study of how knowl-
edge circulates in such a big project,” says 

Borrelli. She is particularly interested in the 
immediacy of publication in the physics com-
munity via the online repository www.arXiv.org, 
where a hundred or so non-peer-reviewed high-
energy physics preprints are deposited every day 
and are openly accessible. “How do physicists 
select papers and orient themselves given this 
onslaught of information?” she asks.

Social scientists are looking beyond the  
professional lives of the scientists to assess how 
the collective collaborations affect the physi-
cists on a personal level. Knorr Cetina says that 
many particle physicists are plagued by night-
mares in which their actions cause the project 
to fail. “These are the nightmares of those who 
perceive themselves as a link in a chain, not as 
an individual,” she says.

Abnormal stress
Knorr Cetina argues that the anxiety displayed 
by particle physicists is heightened beyond 
the usual career stress because they strongly 
identify with the detector (K. Knorr Cetina  
Interdiscipl. Sci. Rev. 32, 361–375; 2007). “This 
is an object that they built with their hands, but 
they describe it as a friend,” says Knorr Cetina. 
When reporting their nightmares, physicists 
described being shaken by the imagined loss 

of the detector as though it 
was the death of a beloved 
family member — something 
not routinely seen in other 
experimental scientists. 

De Roeck agrees that physi-
cists at the LHC are under 

extreme pressure. Each experiment is made 
up of subgroups who oversee different com-
ponents of the experiment and no subgroup 
wants to be the weakest link that lets thousands 
of other people down. But he cautions against 
making too much of the relationship between 
experimenter and detector. “I wouldn’t go so 
far as to say that physicists have some psycho-
logical problem where they start mistaking the 
detector for a friend and talking to it,” he says 
with a laugh. 

Ultimately, it is the ever-growing detectors 
that are to blame for the increasing size of col-
laborations in particle physics. The invention 
of the bubble chamber for tracking the path 
of particles in the 1950s required groups of 10 
physicists — at the time thought to be a large 
collaboration. 

Physicists are already making plans for the 
next generation of particle accelerators. But 
these may provide little new territory for social 
scientists to explore. “There won’t be another 
step up in collaboration size to 25,000 physi-
cists,” says Galison. “We’re hitting the limits of 
people in high-energy physics.”  
Zeeya Merali is a freelance writer in London. 

“The only people 
qualified to truly review 
the work are within the 
collaboration.”
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Like a giant commune, members of the ATLAS collaboration work, eat and party together.
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ATLAS collaboration in Nature
“Like a giant commune, [they] work, eat, and party  together.”

Hong
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while discovering new physics!^



HongSame as p6
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Inside the toroid



Muons, electrons

H → γγ → γee

Oct. 16, 2011
16:11:14 CEST

run 191190
evt 19448322

Hong
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Low-threshold lepton triggers important for studies in this talk

H → ZZ* → µµµµ

June 10, 2012 
13:12:52 CET 

run 204769 
evt 82599793



2011, 11 vertices Between vertices〈Δz〉≈ 2 - 3 mm, σΔz ≈ 0.2 mm

High luminosity → high pile-up〈μ〉 Hong
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2012, 25 vertices Interaction region width in z ≈ 5 - 6 cm
Pile-up increased from 2011 to 2012



Hong
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VBF,"H"jj →WW* jj → eµ jj MET Jun. 17, 2012
07:18:33 CEST
run 205071
evt 160243894

Δηjj = 4.7
Mjj = 531
Meµ = 21 GeV
Δφℓℓ = 0.23
MT = 134

(

HWW

VBF

MET

Jet

Muon

Electron

Jet

Event characteristics
• Jets are forward with η ~ ± 2.4
• Large ttbar→WbWb→eµ bb MET

• Veto with b-tag operating pt. 85%

MET

Jet

Jet

Muon Electron

Another event that is VBF-like in jj & Higgs-like in decay



MET

Jet

Muon

Electron

Jet

Right: Two b-tag jets, 
muon, electron, MET

Below: Zoom-in to see 
two displaced vertices 
for b-hadron decays

Hong
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ttbar → WbWb → eµ bb MET



MET

Jet

Muon

Electron

Jet

Right: Two b-tag jets, 
muon, electron, MET

Below: Zoom-in to see 
two displaced vertices 
for b-hadron decays

Hong
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ttbar → WbWb → eµ bb MET

3mm

2.5mm

ttbar is a major background to VBF, H → WW* → ℓνℓν



MET
51 GeV

PT = 22
η = 2.0

Muon

Jet Jet

Muon

ET > 40

MT, W = 61 GeV

Jet (has 
muon)

Jet (has 
muon)

Two Jets

May 16, 2010
05:47:06 EST
run 155112
evt 98844660

→ℓν
W jjj event

Comparison of
! Jet
! Tau (3-prong)
! Electron

63

ElectronTauJet



HongJets
Calo clusters with anti-kT, R = 0.4
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EM calo
Had. calo

Solenoid

Need two jets for VBF
• Jet Vtx. Fraction kills pile-up jets

Calibrate energy against γ, Z→ℓℓ
• ~5% error on Jet Energy Scale

Number of primary vertices
1 2 3 4 5 6 7 8 9 10 >10
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ATLAS Preliminary  R=0.4 EM+JEStAnti-k
| < 2.5 > 25 GeV, |jet

T
p-1 L dt = 2 fb=7 TeV,  s

Data 2011
Z ALPGEN MC10
Data 2011 (|JVF| > 0.75)
Z ALPGEN MC10 (|JVF| > 0.75)

〈NJet〉

0
62 4 8 10

0.2

0.4

0.6

No. of primary vertices

without JVF

Z→ℓℓ
ATLAS Prelim.
7 TeV, 2fb–1

line: MC
dot: data

+

JVF>0.75



HongJet energy scale
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Define jet from clusters:
• PT > 25 !in tracking vol.

• PT > 30! if forward
2.4 < |η| < 4.5

Jet-vertex association to 
suppress pile-up (p103-104)
fJVF > 0.5 for PT  < 50 GeV



Hongb-tagging R.O.C. curves
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Hongb-tagging scale factor
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Statement of the problem
• MET measured, not neutrinos

To illustrate, consider ττ→hhν1ν2

• 6 components for ν1, ν2

• 4 eqns.!M(v1 h)! = 1.78 GeV
 M(v2 h)! = 1.78 GeV
! (Pv1+Pv2)x  = METx

! (Pv2+Pv2)y  = METy

• 2 left.  Can parametrize by set(Δρ1, Δρ2)

Hint: Generate Δρ distributions with MC 

HongH→ττ v. Z→ττ separation with M(ττ)
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Δρ = √ (Δθhν)2 + (Δφhν)2 (rad)
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-132/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-132/


HongSame as p24, but for ≥ 2j
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HongSame as p25 with legends
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)!Signal strength (
  -1  0 +1

Combined

 4l (*) ZZH 

 H 

l l (*) WWH 

 H 

 bbW,Z H 

-1Ldt = 4.6 - 4.8 fb = 7 TeV:  s
-1Ldt = 13 fb = 8 TeV:  s

-1Ldt = 4.6 fb = 7 TeV:  s
-1Ldt = 13 fb = 8 TeV:  s

-1Ldt = 4.8 fb = 7 TeV:  s
-1Ldt = 13 fb = 8 TeV:  s

-1Ldt = 13 fb = 8 TeV:  s

-1Ldt = 4.6 fb = 7 TeV:  s
-1Ldt = 13 fb = 8 TeV:  s

-1Ldt = 4.7 fb = 7 TeV:  s
-1Ldt = 13 fb = 8 TeV:  s

 = 125 GeVHm

 0.24" = 1.35 !

ATLAS Preliminary

1 20

µ = 1
stat. experimental theory

Total 0.99 ± 0.21 ± 0.17 ± 0.12

NJet ≤ 1 0.82 ± 0.22 ± 0.25± 0.25

NJet ≥ 2 1.4 ± 0.5 ± 0.4± 0.4
Caveat emptor: The table is using 7 & 8 TeV data at MH 

= 125.5 GeV combining all the production modes.

SM
(σ⋅B)Data

(σ⋅B)SM
µHiggs =

HongBreakdown H → WW*

71

Signal significance for HWW is 3.8σ  (3.8σ)
observed expected

Considering only VBF HWW is 2.5σ  (1.6σ)



HongVBF significance w.r.t. ggF
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HongH → ττ math
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METX = (P sin θ1) · cos φ1 + (P sin θ2) · cos φ2

METY = (P sin θ1) · sinφ1 + (P sin θ2) · sinφ2

M(τ1)2 = 2 · P · P ·
�
1− cos(θ1 − θ1)

�

M(τ2)2 = 2 · P · P ·
�
1− cos(θ2 − θ2)

�

H

(P2, θ2, φ2)

(P1, θ1, φ1)

(P1, θ1, φ1
)(P2, θ2, φ2

)
τ1

τ2



Same as p41, but for combined channels
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Same as p42 
with legends
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HongSame as p43, but stand-alone
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HongFuture projections
https://cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2013–014
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Thatʼs all!
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